Iz knjige Da li postoje stvari koje ne postoje, Voje Antonića |
Gausova kriva
Uzmimo u ruku 20 novčića i bacimo ih na sto. Koliko je palo na “glavu”, a koliko na “pismo”? Verovatno je da ima približan broj i jednih i drugih, jer je to najverovatnija mogućnost (“entropija zatvorenog sistema raste”, rekli bi fizičari, koji entropiju izjednačavaju sa količinom nereda). A da li može da se pojavi svih 20 “glava”? Svakako da može, mada to nije mnogo verovatno: možemo da očekujemo da će se to dogoditi u jednom od oko milion slučajeva.
Nacrtaćemo dijagram kod koga je na horizontalnoj osi predstavljen broj jednako okrenutih novčića (za “pismo” on opada od 20 do 0 a za “glavu” raste od 0 do 20), a na vertikalnoj verovatnoća pojavljivanja kombinacije. Tako ćemo dobiti krivu liniju koja liči na zvono i koju matematičari zovu Zvonasta ili Gausova kriva, mada se u stručnim diskusijama češće koristi izraz Normalna distribucija.
Verovatnoća pojavljivanja “glava-pismo” za 20 bacanja novčića
Naravno da Gausova kriva ne pokazuje samo verovatnoću koja se odnosi na bacanje novčića. Mnoge pojave u prirodi imaju sličnu zakonitost. Recimo, visina ljudi: mali je broj veoma niskih ili veoma visokih, samo je broj prosečno visokih veliki. Slično je i sa inteligencijom, kapacitetom pluća ili bilo kojim drugim merljivim svojstvom.
U poglavlju Tehnike obmanjivanja / Rašljari govorili smo o testiranju rašljara, sprovedenog od strane minhenskog Univerziteta za fiziku. Tada smo pomenuli da je u komentaru rezultata agencija Wagner, Betz und Koenig uzela natprosečan rezultat koji je postiglo nekoliko rašljara i navela ga kao dokaz da se “teza o postojanju rašljarskog fenomena može smatrati empirijski dokazanom”. Čak ni činjenica da isti rašljari nisu mogli da ponove ostvareni rezultat, nije navela stručnjake iz agencije da zaključe da je on naprosto bio slučajan. Uz dovoljno veliki broj učesnika testa (a u ovom slučaju bilo ih je preko 500) neizostavno je moralo da se nađe i nekoliko veoma dobrih rezultata; bilo je svakako i veoma loših, ali to niko nije pomenuo. Ako bi se nacrtala raspodela uspešnosti rašljara, verovatno je da bi se dobila kriva koja liči na Gausovu, a u njoj uvek ima nešto mesta za ekstremne (i dobre i loše) slučajeve.
Selekcijom rezultata ispitivanja moguće je dokazati praktično bilo koju tvrdnju - setimo se Mišela Goklena (Michel Gauquelin) iz poglavlja Astrologija / Sportski šampioni i efekat Marsa. Selekciju rezultata često zloupotrebljavaju i parapsiholozi, jer odbacuju rezultate koji ne podržavaju njihovu omiljenu tezu. Ponekad se za to pronalaze izgovori (učesnik je bio dekoncentrisan, umoran, nije imao “svoj dan”) a ponekad se dozvoljava i da testirana osoba sama odluči kad će prekinuti test (pri čemu se poslednji rezultat odbacuje). Ovo pravilo “slobodnog zaustavljanja i nastavljanja testa” čest je razlog spora između parapsiholoških institucija i njihovih kritičara.
U parapsihološkim eksperimentima postoji i praksa da se učesniku dozvoli mali period “zagrevanja” pre početka glavnog testa, pri čemu se rezultati ne uzimaju u razmatranje. Ako se pri tom postigne rezultat koji govori u prilog postojanju parapsihičkog fenomena, eksperimentatori ipak mogu da odluče da ga prihvate.
Tipična normalna distribucija
Gledajući crtež Gausove krive, lako možemo da vidimo kako selekcija rezultata, ma kako mala i diskretna bila, može da utiče da rezultat testa bude neobjektivan. Recimo da smo na većem broju dobrovoljaca ispitivali sposobnost telepatskog prenosa brojeva i da smo rezultate predstavili dijagramom; oni će davati nasumične rezultate pa će biti neuspešnih i veoma neuspešnih (levi deodijagrama), ali i uspešnih i veoma uspešnih (desni deo). I jednih i drugih biće malo (samo će prosečnih biti mnogo) pa će ovaj dijagram, ako je broj učesnika bio dovoljno velik, ličiti na Gausovu krivu. Ako sad sve neuspešne (ili bar veoma neuspešne) proglasimo za nemerodavne (jer to, bez sumnje, nije bio “njihov” dan) time ćemo “odseći” jedan deo dijagrama i njegovo težište (prosečan rezultat) biće na silu pomeren na željenu stranu. Ovako lažiran rezultat biće mali ali značajan, baš kao što parapsiholozi tvrde da njihovi eksperimenti navode na zaključak o postojanju malih ali značajnih parapsihičkih fenomena.
“Selekcija rezultata eksperimenta najgori je vid prevare”, kaže se u Enciklopediji skepticizma i paranormalnog, koju je izdalo Englesko udruženje skeptika. Ipak, nije to jedini obrazac za lažiranje rezultata; mnogo je načina da se nepravilno vođenim testom rezultat “našteluje” na željenu stranu, čak i kad je način prikupljanja podataka ispravan. Evo jednog primera: recimo da nam je iz nekog razloga potrebno da dokažemo tezu da se bacanjem novčića češće pojavljuje “glava” nego “pismo”. Ova teza je besmislena, ali imamo načina da je dokažemo sa sigurnošću, i to bez “varanja”. Evo kako:
Uzmemo novčić i bacimo ga mnogo puta brojeći rezultate. Posle velikog broja bacanja, bilans će biti takav da će se zbir dobijenih “glava” kretati oko 50%, s tim što će oscilovati oko ove vrednosti - nekad će biti malo iznad nje, a nekad ispod. Treba samo da sačekamo da u jednom trenutku bude iznad 50% (što će se povremeno događati), da u tom trenutku broj bacanja proglasimo za dovoljan i da objavimo da smo dokazali željenu tezu. Ovaj eksperiment, naravno, možemo da ponovimo neograničen broj puta sa istim ishodom. Može li neko posle 10 ovako izvedenih eksperimenata još uvek da sumnja da novčić češće pada na “glavu”? Ili, ako želite, na “pismo”, ili... šta god je eksperimentator uvrteo sebi u glavu.
Spisak članaka iz knjige:
Voja Antonić - Da li postoje stvari koje ne postoje
|